Approaches to ab initio molecular replacement of α-helical transmembrane proteins

نویسندگان

  • Jens M H Thomas
  • Felix Simkovic
  • Ronan Keegan
  • Olga Mayans
  • Chengxin Zhang
  • Yang Zhang
  • Daniel J Rigden
چکیده

α-Helical transmembrane proteins are a ubiquitous and important class of proteins, but present difficulties for crystallographic structure solution. Here, the effectiveness of the AMPLE molecular replacement pipeline in solving α-helical transmembrane-protein structures is assessed using a small library of eight ideal helices, as well as search models derived from ab initio models generated both with and without evolutionary contact information. The ideal helices prove to be surprisingly effective at solving higher resolution structures, but ab initio-derived search models are able to solve structures that could not be solved with the ideal helices. The addition of evolutionary contact information results in a marked improvement in the modelling and makes additional solutions possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab initio molecular-replacement phasing for symmetric helical membrane proteins

Obtaining phases for X-ray diffraction data can be a rate-limiting step in structure determination. Taking advantage of constraints specific to membrane proteins, an ab initio molecular-replacement method has been developed for phasing X-ray diffraction data for symmetric helical membrane proteins without prior knowledge of their structure or heavy-atom derivatives. The described method is base...

متن کامل

Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solut...

متن کامل

AMPLE: a cluster-and-truncate approach to solve the crystal structures of small proteins using rapidly computed ab initio models.

Protein ab initio models predicted from sequence data alone can enable the elucidation of crystal structures by molecular replacement. However, the calculation of such ab initio models is typically computationally expensive. Here, a computational pipeline based on the clustering and truncation of cheaply obtained ab initio models for the preparation of structure ensembles is described. Clusteri...

متن کامل

A hybrid density functional theory (DFT) and ab initio study of α-Acyloxycarboxamides Derived from Indane-1, 2, 3-trione

α-acyloxycarboxamides are synthesized from three component Passerini reaction between indane-1,2,3-trione, isocyanides, and thiophenecarboxylic acids in quantitative yields. The structures of the final products were confirmed by IR, 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. The B3LYP/HF calculations for computation of 1H an...

متن کامل

Solving Protein Structures Using Molecular Replacement Via Protein Fragments

The need to determine phases is a major bottleneck in a fully automated X-ray crystallography pipeline. The problem commonly called phasing can be solved by a computational method called molecular replacement (MR). With the deposition of more and more proteins into the Protein Data Bank (PDB), it has been shown that the MR yields better initial models. In this paper, ab initio first model gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2017